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Abstract—Decentralized detection is one of the key tasks that a
wireless sensor network (WSN) is faced to accomplish. Among sev-
eral decision criteria, the Rao test is able to cope with an unknown
(but parametrically-specified) sensing model, while keeping com-
putational simplicity. To this end, the Rao test is employed in this
paper to fuse multivariate data measured by a set of sensor nodes,
each observing the target (or the desired) event via a nonlinear
mapping function. In order to meet stringent energy/bandwidth
requirements, sensors quantize their vector-valued observations
into one or few bits and send them over error-prone (to model
low-power communications) reporting channels to a fusion center
(FC). Therein, a global (better) decision is taken via the proposed
test. Its closed form and asymptotic (large-size WSN) performance
are obtained, and the latter leveraged to optimize quantizers. The
appeal of the proposed approach is confirmed via simulations.

Index Terms—Data fusion, decentralized detection, generalized
likelihood ratio test (GLRT), Internet of Things (IoT), rao test,
threshold optimization, WSNs.

I. INTRODUCTION

A. Motivation

D ECENTRALIZED detection with wireless sensor net-
works (WSNs) has become a deeply researched area in

the last decades [1]–[3]. Due to energy and bandwidth limita-
tions, each node, rather than sending its observed measurements,
compresses them into one-bit of information about the estimated
hypothesis to a fusion center (FC), which is in charge of taking a
global decision about either the occurrence of a phenomenon of
interest (hypothesisH1, representing e.g. an anomaly) or the null
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hypothesis H0. The optimal decision test (under Bayesian and
Neyman-Pearson frameworks) at each sensor is well known to be
a one-bit quantization of the local likelihood ratio test (LRT) [1].
However, in most practical cases, the LRT at the generic sen-
sor node cannot be evaluated due to an incompletely-specified
sensing model. Besides, even when the nodes can compute their
local LRT, the search for local quantization thresholds is well
known to be an exponentially complex problem [4].

In such scenarios, the raw measurement (vector) is directly
(compressed and) quantized into one-bit of information. Hence,
to cope with the presence of unknown parameters, the FC is
demanded to solve a composite hypothesis testing problem to
capitalize the spatial diversity provided by the WSN (encoded
into the received bits) [5], [6]. The above task both requires
high performance and acceptable complexity, in order to reduce
the processing power of the FC. Indeed, the latter may be also
battery-powered and represent the cluster head (intermediate
node) of a hierarchical fusion architecture [7], [8].

B. Related Works

As previously mentioned, the sensing model statistics of the
desired signal may be practically not available in nodes. Such
challenging situation has a direct implication on (a) the design
of the fusion rules at the FC, which in turn depend on (b) the
type of local sensor processing.

On one hand, there is a corpus of literature dealing with the de-
sign of simple fusion approaches, which practically neglect the
dependence with respect to (w.r.t) the unknown signal, such as
the well-known counting rule [9], [10] (which enjoys remarkable
robustness [11] and invariance [12] properties) or channel-aware
(but relying on ideal sensor assumption) decision statistics [13],
[14]. On the other hand, in some particular scenarios [15] the
uniformly most powerful test is independent of the unknown
parameters; thus, they do not need to be estimated.

Nonetheless, when neglecting the dependence on unknown
parameters at design phase leads to unacceptable performance
degradation, the generalized likelihood ratio test (GLRT) is usu-
ally capitalized as the building rationale to design the fusion rule.
Accordingly, GLRT-based fusion of quantized data was studied
in [16], [17] and [18] for detecting a source with unknown
location by passive/active methods, and fusing conditionally-
dependent decisions, respectively. Additionally, the GLRT has
been leveraged in [6] to detect an unknown deterministic signal
through a WSN reporting one-bit quantized measurements via

2373-776X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 01,2021 at 10:28:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6230-2958
https://orcid.org/0000-0002-0354-6952
https://orcid.org/0000-0002-4466-6950
https://orcid.org/0000-0001-6834-8482
mailto:domenico.ciuonzo@unina.it
mailto:s.h.javadi@ieee.org
mailto:a.mohammadi@ub.ac.ir
mailto:salvorossi@ieee.org


CIUONZO et al.: BANDWIDTH-CONSTRAINED DECENTRALIZED DETECTION OF AN UNKNOWN VECTOR SIGNAL VIA MULTISENSOR FUSION 745

TABLE I
CATEGORIZATION OF CLOSELY-RELATED WORKS ON DECENTRALIZED DETECTION WITH UNKNOWN PARAMETERS. LEGEND:

VM (VECTOR MEASUREMENT): (SCALAR MEASUREMENT); (VECTOR MEASUREMENT);
VP (VECTOR PARAMETER): (SCALAR PARAMETER); (VECTOR PARAMETER);

NLM (NON-LINEAR MODEL): (LINEAR MODEL); (NON-LINEAR MODEL WITH LINEAR DEPENDENCE IN THE

UNKNOWN PARAMETERS); (NON-LINEAR MODEL);
Q (QUANTIZATION): (NO QUANTIZATION); (ONE-BIT QUANTIZATION); (MULTI-BIT QUANTIZATION);

RC (REPORTING CHANNELS): (IDEAL); (NOISY); FUSION RULE: GLR (GENERALIZED LIKELIHOOD RATIO); LOD (LOCALLY-OPTIMUM DETECTION).

noisy communication channels; this fusion rule has been then
extended to cope with multi-bit measurements in [19]. Recent
interesting applications of the GLRT also include distributed
detection of arbitrarily-permuted one-bit quantized data [20],
sparse signals [21] and one-bit quantized data in a sequential
setup [22].

Conversely, the Rao test [23] does not require maximum like-
lihood estimates under the alternative hypothesis (H1). Hence,
it represents a simpler detection method for tackling composite
hypothesis testing, while asymptotically yielding the same per-
formance as the GLRT. Accordingly, several works appeared
leveraging Rao test in WSN-based detection [5], [24]–[28] and,
in general, score tests [29], [30] (due to analogous advantages).
For example, Ciuonzo et al. [5] have proposed a Rao fusion rule
based on one-bit quantization of scalar measurements, whereas a
corresponding generalization to multi-bit case has been devised
in [24]. Recently, its simplicity has been exploited to detect
an uncooperative target (e.g. with also unknown location) at
the FC, by developing a generalized version of the test (i.e.
the supremum of a family of target-location-dependent Rao
statistics) for the one-bit [25] and multi-bit cases [26]. The
uncooperative-target case has been recently analyzed also in an
online setup with a sequential version of the above fusion (one-
bit) rule [27]. Furthermore, [28], [31] have applied the Rao test
to collision-aware reporting for fusion design. Finally, locally
most-powerful tests have been applied to decentralized detection
of sparse signals in (generalized) Gaussian noise [29], [30].

It is worth noticing that all the above works have dealt only
with (single- or multi-level) quantized versions of a scalar mea-
surement (xk) at each sensor [5], [6], [24]–[27]. Differently,
when each sensor node has available a vector of measurements
(xk), it has been suggested in [32], [33] (for estimation and

detection tasks, respectively) to compress its observations using
a linear precoder. By using a linear precoder, the vector-valued
observation of the kth node, xk, is converted to a scalar ckTxk

before transmission, where ck is a compression vector. However,
in the work [33], no quantization issues were taken into account
and a GLRT fusion rule was designed based on real-valued
(infinite-bandwidth) compressed measurements. On the other
hand, Fang et Li [32] considered also one-bit quantization of
the resulting scalar measurement for estimation purposes. In
the latter case, the combined compression-quantization strategy
is referred to as hyperplane-based quantizer, because of its
geometrical interpretation. It is worth noticing that in the above
corpus of literature only linear sensing models have been con-
sidered. The above considerations are condensed within Table I,
which categorizes related works on decentralized detection with
unknown parameters (viz. composite hypotheses) along the main
distinctive features so as to highlight the novelty of our work.

Accordingly, the design of (detection) fusion rules (a) in the
vector case, (b) based on a non-linear sensing model and (c) with
both compression & quantization (hyperplane-based quantizers)
appears unexplored, to the best of our knowledge.

C. Summary of Contributions and Manuscript Organization

The contributions of this paper are summarized as follows:
� We study distributed detection by sensor fusion of data

from network nodes for (i) a general (e.g. non-linear) vector
measurement model, (ii) sensors employing hyperplane-
based quantizers, (iii) imperfect communication channels
with non-identical per-sensor bit error probabilities and
(iv) no knowledge of the desired vector signal determining
the hypothesis. As a byproduct of our study, the linear
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scalar and vector valued measurement models are inves-
tigated as special cases.

� After investigating the GLRT for the above general model,
we explicitly derive the Rao test as a computationally
simpler alternative, namely having the appeal of being in
closed-form. The corresponding Rao fusion rule comprises
the scalar counterpart in [5] as a special case and represents
an appealing method for decision fusion from multimodal
(vector-valued) sensors with limited bandwidth and energy
requirements.

� We provide the asymptotic performance of Rao (viz.
GLRT) fusion rule with respect to the number of sen-
sors. Leveraging its explicit expression, we pursue an
asymptotically-optimal design for hyperplane-based quan-
tizers (e.g. the design of both the compression vectorck and
the quantizer threshold τk) which aims at maximizing the
corresponding non-centrality parameter [23]. It is shown
that, while an explicit optimized expression can be obtained
for the optimal τ�k (in general, depending on the particular
ck chosen), the optimal compression vector c�k depends on
the unknown vector signal θ. Hence, we resort to different
sub-optimal, but reasonable, heuristics for its design.

� The above results for one-bit hyperplane-based quantizers
are then extended to the case of multi-bit quantization for
each sensor, following the assumptions in [34]. The corre-
sponding multi-bit Rao fusion rule retains the same imple-
mentation simplicity, while generalized heuristic choices
are carried out for compression matrix design.

� The Rao test is compared to the GLRT through simulations
showing that, other than sharing the same asymptotic dis-
tribution, it achieves practically the same performance for
a finite number of sensors. To make the comparison com-
plete, also (upper-bound) baselines are here considered.
Finally, performance trends w.r.t. relevant WSN parameters
are investigated.

The paper is organized as follows: Section II describes the
measurement and communication channel models used, along
with the quantization method employed. The GLRT and Rao
fusion rules are formulated in Section III, while the parameter
design of local sensors is discussed in Section IV. The one-bit
quantizers and the related Rao test are extended to the general
multi-bit case in Section V. Simulation results for validation of
our approach are given in Section VI. Finally, Section VII draws
conclusions and suggests further avenues of research.

Notation: Lower-case (resp. upper-case) bold letters denote
vectors (resp. matrices), with ak (resp. an,m) representing the
kth element (resp. (n,m)th element) of a (resp. A); upper-case
calligraphic letters, e.g. A, denote finite sets; E{·}, (·)T , tr(·),
(·)†, 〈·, ·〉 and ‖ · ‖ denote expectation, transpose, matrix trace,
Hermitian, inner product and vector Euclidean norm operators,
respectively; 0N (resp. 1N ) denotes the null (resp. ones) vector
of length N ; In denotes the identity matrix of size n; P (·) and
p(·) are used to denote probability mass functions (PMF) and
probability density functions (PDF); N (μ,Σ) denotes a normal
distribution with mean vectorμ and covariance matrixΣ;Q(·) is
used to denote the complementary cumulative distribution func-
tion (CCDF) of standard normal distribution; U(a, b) denotes

Fig. 1. System model used in this paper. Each sensor compresses its measure-
ment vector via a hyperplane-based quantizer. Each bit is then sent through a
binary symmetric channel and received by the FC.

a uniform PDF with support [a, b]; χ2
k (resp. χ

′2
k (ξ)) denotes

a chi-square (resp. a non-central chi-square) distribution with
k degrees of freedom (resp. and non-centrality parameter ξ);
u(·) ∈ {0, 1} denotes the Heaviside (unit) step function; finally,
the symbols ∼ and

a∼ mean “distributed as” and “asymptotically
distributed as”.

II. SYSTEM MODEL

In this work we adopt the system model shown in Fig. 1,
which is elaborated throughout this section. Specifically, we
first describe the non-linear measurement model (Section II-
A) considered. Then, we focus on sensors’ compression &
quantization method, ending with the communication model
employed (Section II-B). Finally, we formulate rigorously the
testing problem considered (Section II-C).

A. Measurement Model

We consider a binary hypothesis testing problem in which a
collection of sensor nodes k ∈ K � {1, . . .,K} collaborate to
reveal an anomalous event, summarized through the unknown
deterministic vector parameter θ ∈ Rp. In the rest of the paper,
we make the assumption K ≥ p, i.e. there are enough sensors
to (implicitly) estimate the unknown vector θ.

More specifically, we assume that the normal behaviour is
represented by θ = θ0, while any deviation θ 	= θ0 denotes an
anomaly. The present model encompasses many tasks of interest,
such as revealing (in a decentralized fashion) the presence of an
unknown target (i.e. θ0 = 0p).

The measurement model at kth sensor is summarized as
follows: {

H0 : xk = gk(θ0) +wk,

H1 : xk = gk(θ) +wk, k ∈ K;
(1)
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where xk ∈ Rm denotes the kth node measurement vector,
gk(·) : Rp → Rm is a known functional (possibly non-linear)
mapping describing the input-output relationship between the
(unknown) parameter vector and the measurement vector for
the kth node. Furthermore, wk ∈ Rm denotes the noise vector
experienced by kth sensor, modelled as a multivariate zero-mean
Gaussian, that iswk ∼ N (0m,Σk); the random variables (RVs)
wks are here assumed mutually independent. Finally, aiming at
keeping a compact notation, we collect all the measurements in
the vector x � [xT

1 . . .x
T
K ]T ∈ RmK×1.

Remarkably, the model in Eq. (1) comprises many special
cases of interest, as detailed hereinafter.

1) The scalar linear (SL) measurement model: If we just
consider a linear model and a scalar-valued parameter to be
detected (θ0 = 0), we obtain{

H0 : xk = wk,

H1 : xk = hkθ + wk, k ∈ K (2)

where θ is the unknown scalar parameter, hk is the observation
coefficient and wk ∼ N (0, σ2

k). Such a model was extensively
analyzed in decentralized estimation studies [34]–[37] and, re-
cently, in (decentralized) composite hypothesis testing [5], [6],
[19], [24].

2) The vector linear (VL) measurement model: Such model
is the vector counterpart of Eq. (2) (i.e. θ0 = 0p) and can be
summarized as follows:{

H0 : xk = wk,

H1 : xk = Hkθ +wk, k ∈ K (3)

where θ is the unknown vector parameter, Hk ∈ Rm×p is a
known observation matrix andwk denotes the noise vector. This
problem was considered in decentralized estimation in [32], [34]
while a (composite) hypothesis testing was actually considered
only in [33] for the special case Hk = Ip, adopting (a) a GLRT
design as the relevant fusion rule and (b) assuming perfect
measurement reporting at the FC (i.e. no quantization).

B. Compression, Quantization and Reporting

In this paper, we will consider a hyperplane-based quantizer,
as proposed in [32], [34]. More specifically, to meet stringent
bandwidth and power budgets in WSNs, the kth sensor quantizes
its observation vector xk into one bit (bk) as [32]:

bk � u
(
cTk xk − τk

)
, (4)

where ck ∈ Rm is a compression vector used by the kth node
to obtain a real-valued scalar and τk denotes the kth sensor
quantizer threshold (both known at the FC), determining the
binary value of the corresponding bit bk. Hyperplane-based
quantizers restrict the partition region to be a half-space whose
border is a hyperplane defined by a compression vector ck and
a quantization threshold τk. Their appeal lies in their ease of
implementation, which is highly-desirable on low-cost sensor
devices.

Remark: for the SL model, the expression in Eq. (4) special-
izes into bk � u(ck xk − τk). Accordingly, the presence of the
scaling term ck is redundant in the quantization of the SL model
and kept only for notational consistency in what follows.

Similarly as in [5], [6], [25], we assume that the one-bit
quantized measurement bk is sent over a binary symmetric
channel (BSC) and the FC observes an error-prone yk, that is

yk =

{
bk with probability 1− εk

(1− bk) with probability εk
(5)

where εk denotes the (known) bit error probability (BEP) expe-
rienced by the node k’s link to the FC. Finally, we collect the
received data from nodes at the FC as y � [ y1 · · · yK ]T .

C. Problem Statement

We highlight that the hypothesis testing described in Eq. (1)
represents a two-sided test [23], where {H0,H1} corresponds
to {θ = θ0,θ 	= θ0} and, additionally, the vector parameter θ
is unknown. The above task is further complicated by (i) the
presence of a possibly non-linear mapping gk(·) in the sensing
process, (ii) the loss of information (an additional non-linearity)
due to compression & quantization (based on ck’s and τk’s) and
(iii) the non-ideality of the reporting channels.

Accordingly, the problem considered here is (a) the deriva-
tion of a (computationally) simple test (resorting to a decision
statistic Λ, which is compared to a decision threshold γ) on the
basis ofy and (b) the corresponding quantizer design (consisting
in a globally-optimal choice of ck’s and τk’s) for each sensor.
We remark that the quantizer design in (b) is peculiar to our
problem, as the objective typically used in vector quantization
corresponds to minimizing the reconstruction error between xk

and its quantized counterpart. Differently, in this paper, the
ultimate goal of the WSN is to decide reliably for the actual
hypothesis (either H0 or H1) in force without necessarily being
able to recover the set of sensors measurements.

Finally, the performance will be evaluated in terms of the
well-known system (global) probabilities of detection PD0

�
Pr{Λ > γ|H1} and false-alarm PF0

� Pr{Λ > γ|H0}.

III. FUSION RULES DESIGN

This section deals with fusion rules design. Specifically, after
obtaining the explicit likelihood function for the hypothesis test-
ing problem at hand (Section III-A), the implicit GLRT expres-
sion (Section III-B) and the explicit Rao test form (Section III-C)
are obtained, highlighting their specialization to SL/VL models.

A. Likelihood Function

Before proceeding with the design of the considered fusion
rules, we compute the explicit (log-) likelihood of the received
vectory as a function ofθ. We remark that simply settingθ = θ0

provides the (log-) probability mass function (PMF) under H0.
More specifically, by exploiting the independence among

nodes’ data conditioned on each hypothesis, it can be readily
shown that the PMF factorizes as P (y;θ) =

∏K
k=1 P (yk;θ).

Then, the contribution of the kth node, through the term
P (yk;θ), is given in closed form as:

P (yk;θ) = [ψk (θ)]
yk [1− ψk (θ)]

1−yk , (6)
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whereψk(θ) � P (yk = 1;θ) denotes the received bit probabil-
ity. The latter term is explicitly given by:

ψk (θ) = Q
⎛
⎝τk − cTk gk (θ)√

cTkΣkck

⎞
⎠ (1− 2εk) + εk (7)

Indeed, the useful (scalar) signal cTk gk(θ) is affected by an
equivalent noise vk � (cTkwk) arising from a linear operation
of wk. As a result, it holds vk ∼ N (0, cTkΣkck).

Because of bits’ mutual independence, the log-PMF is easily
obtained as:

lnP (y;θ) =

K∑
k=1

yk lnψk (θ) + (1− yk) ln [1− ψk (θ)] (8)

In the following, we investigate the fusion rules based on GLRT
and Rao test.

B. GLRT

A common approach to handle detection in the presence of
unknown parameters (viz. composite hypothesis testing) resorts
to the GLRT [23]. If the GLRT is adopted as the fusion rule at
the FC, the implicit expression will be given by:

ΛG � 2 ln
max
θ

P (y;θ)

P (y;θ0)
. (9)

The evaluation of the above statistic relies on the log-PMF form
provided in Eq. (8) and is complicated by the optimization at the
numerator. It is proved that the log-likelihood function is con-
cave in θ for some relevant cases [32], [35], hence there is only
a (unique) global maximum. Still, although computationally-
efficient search algorithms can be used to find the global maxi-
mum, a closed form for Eq. (9) cannot be obtained.

C. Rao Test

An attractive alternative which avoids cumbersome optimiza-
tion is given by the well-known Rao test [23], as it does not
require maximization in the numerator of Eq. (9). The implicit
expression for Rao test is given by [23]:

ΛR � δT (y;θ)
∣∣
θ=θ0

I−1 (θ0) δ (y;θ)|θ=θ0
(10)

where δ(y;θ) � ∂ lnP (y;θ)
∂θ is the score function and I(θ) �

E{δ(y;θ) δ(y;θ)T } denotes the Fisher information matrix
(FIM) as a function of the unknown parameter θ.

In what follows, we obtain the closed-form Rao statistic for the
general measurement model in Eq. (1). To this end, we need to
evaluate the closed-form expressions of the score vector δ(y;θ)
and the FIM I(θ). The following two propositions will help
accomplishing the above task.

Proposition 1: The explicit form of the score vector is:

δ (y;θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)]J
T
k (θ) ck (11)

where

Jk (θ) �
∂gk (θ)

∂θT
(12)

Algorithm 1: Rao test: Fusion rule evaluation at the FC.
Init Parameters: compression vectors

c1, . . . , cK ;
quantization thresholds τ1, . . . , τK ;

Input: received bits y1, . . . , yK .
Output: the estimated hypothesis Ĥ.
1: for k = 1, . . . ,K do
2: Compute ψk(θ) and qk(θ) as Eqs. (7) and (13),

respectively;
3: end for
4: Compute the score vector δ(y;θ) as Eq. (11);
5: Compute the FIM I(θ) as Eq. (14);
6: Evaluate Rao statistic ΛR as Eq. (15);

7: Declare the estimated hypothesis as ΛR

Ĥ=H1

≷
Ĥ=H0

γ;

denotes the Jacobian matrix of gk(θ), whereas qk(θ) is defined
as

qk (θ) �
ζk pvk

(
τk − cTk gk (θ)

)
ψk (θ) (1− ψk (θ))

. (13)

In the above equation, ζk � (1− 2εk) and pvk
(·) denotes the

PDF of vk.
Proof: See Appendix A.
Proposition 2: The closed form of the FIM is:

I (θ)=

K∑
k=1

{
qk (θ)

2 ψk(θ) [1−ψk(θ)]J
T
k (θ) ckc

T
k Jk (θ)

}
,

(14)

where Jk(θ) and qk(θ) retain the same definitions as in
Eqs. (12) and (13), respectively.

Proof: See Appendix B. �
Therefore, combination of the results in Eqs. (11) and (14)

provides the explicit form of the Rao statistic in Eq. (15),
reported in what follows

ΛR =

{
K∑

k=1

cTk Jk(θ0) qk(θ0) [yk − ψk(θ0)]

}

× I(θ0)
−1

{
K∑

k=1

qk(θ0) [yk − ψk(θ0)]Jk(θ0)
T ck

}
(15)

The algorithmic procedure required for Rao test implementa-
tion is also summarized in Algorithm 1.

Complexity requirements: it is not difficult to show that the
computational complexity involved for implementing the Rao
test at the FC is O(K p+ p2), i.e. a linear scaling in the number
of sensors, and a quadratic scaling in the size of the unknown
vector θ. This contrasts with the GLRT complexity, whose grid-
based implementation scales as O(KNp

θ ), whereNθ is the size
of the per-dimension quantization grid applied to the vector θ.
This incurs in a linear scaling in the number of sensors, but an
exponential scaling in the size of the unknown vector. We recall
that the above complexity measures have been calculated under
the assumptions that all the pre-computations not depending on
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TABLE II
COMPUTATIONAL COMPLEXITY OF BOTH FUSION RULES: K IS THE NUMBER

OF SENSORS AT THE FC; m IS THE SIZE OF THE MEASUREMENT SPACE; p IS

THE SIZE OF THE PARAMETER VECTOR; Nθ DENOTES THE NUMBER OF BINS

USED FOR DISCRETIZING EACH DIMENSION OF THE VECTOR θ.

y have been already performed and stored in memory at the FC
(e.g. I−1(θ0) for Rao test). Still, for completeness, the above
complexity terms are also reported (separately) since they are
needed upon a change of the pairs {ck, τk}Kk=1. The overall
summary of complexity for both the fusion rules is reported in
Table II.

In what follows, we discuss how the general Rao statistic
obtained herein specializes in the (i) SL and (ii) VL models,
respectively. Still, we highlight the appeal of Rao test (closed-
form) implementation even in the general non-linear case, as
only the terms gk(θ) and Jk(θ) (evaluated at θ0) are required.

1) Rao Fusion Rule for SL Model: In case the measurement
model corresponds to the SL model described in Eq. (2), the
Rao statistic is simplified as follows. Specifically, we obtain
δ(y;θ) → δ(y; θ) andI(θ) → I(θ) (i.e. both the score function
and the FIM become scalar-valued, since θ is scalar), with the
corresponding simplified forms:

δ (y; θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)]hk ck (16)

I(θ) =

K∑
k=1

qk (θ)
2 ψk (θ) [1− ψk (θ)]h

2
k c

2
k (17)

Similarly, the auxiliary quantities employed in Eqs. (16) and (17)
are equal to ψk(θ) = Q( τk−ck hk θ

|ck |σk
)(1− 2εk) + εk and qk(θ) =

[ζk pvk
(τk − ck hk θ)]/[ψk(θ)(1− ψk(θ))], respectively. Fi-

nally, the substitution θ = θ0 = 0 in Eqs. (16) and (17) provides
the explicit Rao statistic for SL model.

We recall that a fusion rule based on the Rao test for the SL
model case (Eq. (2)) has been studied in [38]. Similarly, the
GLRT for the same measurement model has been tackled in [6].

2) Rao Fusion Rule for VL Model: Differently, when the
sensing phase adheres to the VL measurement model described
in Eq. (3), the following simplified expressions hold, as the VL
model is a special instance of the general case when gk(θ) =
Hkθ and θ0 = 0:

δ(y;θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)] zk (18)

I(θ) =

K∑
k=1

qk (θ)
2 ψk (θ) [1− ψk (θ)] zkz

T
k (19)

where we have defined zk � HT
k ck. Similarly, the

auxiliary quantities employed in Eqs. (18) and (19) equal

to ψk(θ) = Q(
τk−zT

k θ√
cT
k Σkck

)(1− 2εk) + εk and qk(θ) =

[ζk pvk
(τk − zT

k θ)]/[ψk(θ)(1− ψk(θ))], respectively. Finally,
the substitution θ = θ0 = 0p in Eqs. (18) and (19) provides the
explicit Rao statistic for VL model.

From the general Rao test expression in Eq. (15), we observe
that its implementation (and, consequently, its performance)
depends on the specific choice of the quantizer parameters
(τk, ck), k = 1, . . . ,K. Accordingly, these can be designed to
optimize performance.

IV. DESIGN OF SENSORS’ PARAMETERS

The focus of this section is the design of the parameters
for the hyperplane-based sensors quantizers considered in this
work. Specifically, we first asymptotically characterize the per-
formance of both GLRT and Rao test for the considered general
model (Section IV-A). Then, based on the above characteri-
zation, we design thresholds (Section IV-B) and compression
vectors (Section IV-C) for all the sensors.

A. Asymptotic Performance Characterization

We know from the classical hypothesis testing literature that
the asymptotic performance, in weak-signal condition, of Rao
test and GLRT is given by [23]:

ΛR, ΛG
a∼
{
χ2
p under H0

χ
′2
p (λ) under H1

(20)

where λ denotes the non-centrality parameter:

λ � (θ1 − θ0)
T I (θ0) (θ1 − θ0) (21)

with θ1 being the true value under H1. Clearly, the performance
of both Rao test and GLRT increases monotonically with λ.
The explicit form for λ (readily obtained by exploiting FIM
expression in Eq. (14)) is:

λ =

K∑
k=1

{
qk (θ0, τk, ck)

2 ψk(θ0, τk, ck)

× [1− ψk(θ0, τk, ck)] 〈ck,Jk(θ0)(θ1 − θ0)〉2
}

(22)

with a slight abuse of notation for qk(θ, τk, ck) and
ψk(θ, τk, ck), to stress their dependence on (τk, ck). The above
expression underlines dependence of detection performance
with respect to the nodes’ parameters– i.e. local thresholds (τk)
and compression vectors (ck)– whose design is discussed in the
sequel.

Before proceeding, we report for completeness the specialized
forms of the non-centrality parameter λ in the cases of (i)
SL and (ii) VL measurement models. Specifically, in the SL
measurement model [5], [6], we have

(SL) λ =

K∑
k=1

{
qk (0, τk, ck)

2 ψk(0, τk, ck)

× [1− ψk(0, τk, ck)] c
2
k h

2
k θ

2
1

}
(23)
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while in the VL measurement model, we obtain

(VL) λ =

K∑
k=1

{
qk (0p, τk, ck)

2 ψk(0p, τk, ck)

× [1− ψk(0p, τk, ck)] 〈ck, Hkθ1〉2
}

(24)

The objective of next subsections is to design thresholds τk
and compression vectors ck so as to optimize the asymptotic
performance of GLRT and Rao test, that is:

{τ�k , c�k}Kk=1 = argmax
{ck,τk}Kk=1

λ
({τk, ck}Kk=1

)
(25)

To this end, we rewrite the non-centrality parameter objective in
Eq. (22) as follows:

λ
(
{τk, ck}Kk=1

)
=

K∑
k=1

κk (τk, ck) βk(ck) (26)

where we have defined κk(τk, ck) �
qk(θ0, τk, ck)

2ψk(θ0, τk, ck) [1− ψk(θ0, τk, ck)] and
βk(ck) � 〈ck,Jk(θ0)(θ1 − θ0)〉2, respectively.

Remarkably, the additive form of the non-centrality parameter
λ allows each sensor to be optimized independently. Addi-
tionally, all the involved terms are non-negative. Accordingly,
we first obtain each quantizer threshold by maximizing the
per-sensor contribution κk(τk, ck) so as to obtain an optimized
τ�k (ck) (i.e. being function of the compression vectors). Once
obtained the τ�k (ck), subsequently, we will focus on each ck
design.

B. Design of Local Quantizers’ Thresholds {τk}Kk=1

As previously discussed, we concentrate herein on optimized
local thresholds τk. More specifically, each τk is obtained as the
solution of the following optimization:

τ�k (ck) � argmax
τk

κk(τk, ck) . (27)

To obtain a solution for the aforementioned problem, we first
rewrite κk(τk, ck) exploiting the definitions of ψk(θ0, τk, ck)
and qk(θ0, τk, ck) (Eqs. (7) and (13), respectively). Hence, after
some manipulations, we obtain:

κk(τk, ck) =
ζ2k p

2
vk

(
τk − cTk gk(θ0)

)
ψk(θ0, τk, ck) [1− ψk(θ0, τk, ck)]

=
p2vk

(
τk − cTk gk(θ0)

)
Q

(
τk−cT

k gk(θ0)√
cT
k Σkck

)[
1−Q

(
τk−cT

k gk(θ0)√
cT
k Σkck

)]
+Δk

(28)

where Δk � [εk(1− εk)]/(1− 2εk)
2. Then, since vk ∼

N (0, cTkΣkck), it follows from known results in the literature
of (scalar) quantized estimation and detection [25], [38], [39]
that τ�k (ck) = cTk gk(θ0) corresponds to the optimum threshold.
This property also applies independently on the specific value of
the BEP εk.

Substituting the optimal value τ�k (ck)within Eq. (28) provides
the (threshold-)optimized objective κk(τ�k , ck), whose explicit

expression is:

κk(τ
�
k , ck) =

p2vk
(0)

Q(0) [1−Q(0)] + Δk
(29)

Furthermore, by observing that Q(0) = 1/2 and pvk
(0) =

1/
√

2πcTkΣkck, respectively, the function κk(τ�k , ck) can be
simplified as:

κk(τ
�
k , ck) =

2 ζ2k
π
(
cTkΣkck

) (30)

We conclude the section with a mention on SL and VL mea-
surement models. First, since in scalar and vector cases θ0 = 0
and θ0 = 0p hold, respectively, it is not difficult to show that
such result implies τ�k = 0 in both SL (thus confirming the
results in [5], [6]) and VL measurement models. The optimized

objective in Eq. (30) then specializes into κk(τ�k , ck) =
2 ζ2

k

π c2k σ2
k

for the SL model, while retains the same form as Eq. (30) for
the VL model.

C. Design of Compression Vectors {ck}Kk=1

Once the thresholds τk have been optimized, the non-
centrality parameter λ(·) becomes:

λ
(
{τ�k , ck}Kk=1

)
=

K∑
k=1

κk (τ
�
k , ck) βk(ck) (31)

=

K∑
k=1

2 ζ2k
π

cTk Jk(θ0)(θ1 − θ0)(θ1 − θ0)
TJk(θ0) ck

cTkΣkck

(32)

The τk-optimal non-centrality parameter in Eq. (22) specializes,
for the SL model, in:

(SL) λ
(
{τ�k , ck}Kk=1

)
=

2

π

K∑
k=1

ζ2k
h2k θ

2
1

σ2
k

(33)

From the above equation, it is apparent that a scalar scaling of the
measurement would not alter asymptotic performance. On the
other hand, in the case of a VL model, τk-optimal non-centrality
parameter simplifies to

(VL) λ
(
{τ�k , ck}Kk=1

)
=

2

π

K∑
k=1

ζ2k
cTk Hk θ1θ

T
1 HT

k ck
cTkΣkck

(34)

Thus, in the general case, each optimal compression vector c�k
would be the solution of the following optimization problem
(discarding irrelevant terms)

max
ck

〈ck,Jk(θ0) (θ1 − θ0)〉2
cTkΣkck

. (35)

After defining c̄k � Σ
1/2
k ck the above optimization can be

rewritten as:

max
c̄k

〈
c̄k, Σ

−1/2
k Jk(θ0) (θ1 − θ0)

〉2

c̄Tk c̄k
. (36)
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Then, using Cauchy-Schwarz inequality, we have:〈
c̄k, Σ

−1/2
k Jk(θ0) (θ1 − θ0)

〉2

c̄Tk c̄k

≤
∥∥∥Σ−1/2

k Jk(θ0) (θ1 − θ0)
∥∥∥2

. (37)

The equality in (37) is achieved when c̄k = c̄�k �
αΣ

−1/2
k Jk(θ0)(θ1 − θ0), with α ∈ R \ {0}.

Finally, (i) substituting back the expression of c̄�k into ck
and (ii) choosing ck such that ‖ck‖2 = 1, provide the optimal
solution in explicit form:

c�k =
Σ−1

k Jk(θ0) (θ1 − θ0)∥∥Σ−1
k Jk(θ0) (θ1 − θ0)

∥∥ (38)

Unfortunately, since the true value of θ1 is not known at the
FC, the optimal compression vector c�k cannot be implemented.1

We recall that this is also the case for the (simpler) VL mea-
surement model, whose corresponding explicit solution is c�k =
Σ−1

k Hk θ1/‖Σ−1
k Hk θ1‖. Therefore, the need for sub-optimal

design approaches arises. Herein, four different heuristic alter-
natives are explored, described hereinafter.

Random precoding (RND) corresponds to the naivest precod-
ing approach, as adopted in [33] for decentralized detection in
the no-quantization case. Specifically, the compression vectors
are chosen such that ck ∼ N (0m, Im) and then normalized as
ck/‖ck‖.

Uniform precoding (UNF) hypothesizes that the vector θ1

deviates from the nominal θ0 with an equal-sized contribution
on each component (i.e. θ1 = θ0 + 1p), namely

ck =
Σ−1

k Jk(θ0)1p∥∥Σ−1
k Jk(θ0)1p

∥∥ (39)

Random subspace precoding (RSP) consists in considering the
singular value decomposition of the matrix Ψ � Σ−1

k Jk(θ0),
namely Ψ = UΨΛΨV

T
Ψ, and randomly sampling one of the

columns of UΨ. By doing so, the RSP compression vector ck
will be guaranteed to lie within the same subspace as the optimal
c�k.

Top(-direction) subspace precoding (TSP) similarly con-
siders the singular value decomposition of the matrixΨ, namely
Ψ = UΨΛΨV

T
Ψ, but rather uses the column of UΨ associated

to the highest singular value. In this way, the compression vector
will be guaranteed to lie within the same subspace as the optimal
c�k and be aligned along the direction with the highest sensitivity
with respect to deviations of (θ1 − θ0).

Remarks: clearly, the RND approach does not capitalize any
knowledge of the sensing subspace, while the sensing model
is partially capitalized by UNF precoding. Conversely, RSP
and TSP are likely to better capitalize the whole subspace
information deriving from the sensing model. Finally, we stress
that we do not consider sign-assisted precoding [33] in our

1We recall that, in case of simpler (linear) gk mapping and analog transmis-
sion, the ML estimate of θ1 could be obtained in closed form at the FC. Hence,
when multiple samples are collected by the WSN, the running estimate of θ1

could be exploited to implement Eq. (38) at FC side. However, this procedure
would require the additional (per-sample) feedback from the FC to the sensors
to transmit the updated ck [40].

Algorithm 2: Optimized quantizer processing at kth sensor.

Sensing Model Params: {Σk, gk(θ0),Jk(θ0)}
Input: vector measurement xk;
Output: the bit bk sent to the FC.
1: Select ck according to the heuristic selected (e.g.

RND);
2: Set τ�k (ck) = cTk gk(θ0);
3: Quantize the measurement as bk = u(cTk xk − τ�k );

Algorithm 3: Optimized parameters computation at the FC.

Input: {Σk, gk(θ0),Jk(θ0)}Kk=1

Output: heuristic compression vectors c1, . . . , cK ;
opt. quantization thresholds τ�1 , . . . , τ

�
K ;

1: for k = 1, . . . ,K do
2: Select ck according to the same sensor heuristic;
3: Set τ�k (ck) = cTk gk(θ0);
4: end for

analysis, which leverages the clairvoyant knowledge of the sign
of (θ1 − θ0) but works effectively only under the condition
Ψ = Σ−1

k Jk(θ0) = Ip. Indeed, in general (Ψ 	= Ip), the sign
information on (θ1 − θ0) does not bring any useful information
about the sign of ck.

D. Implementation Aspects of the Proposed Design

In this section, we discuss how the previously-derived opti-
mized quantizer design can be implemented in practice. First of
all, we highlight that all the four compression heuristics con-
sidered have a sole per-sensor dependence, namely ck depends
only on the parameters associated to sensor k. Additionally, each
compression vector ck does not depend on the specific BEP
condition, i.e. εk. Such properties originate from the peculiar
form of the optimal c�k, see Eq. (38). Such remarkable properties
also apply to the optimized thresholds, because of the functional
form τ�k (ck) = cTk gk(θ0). Accordingly, each pair (ck, τ�k ) can
be calculated by both the kth sensor and the FC, without addi-
tional information exchange. The only pre-requisite is that kth
sensor should know the statistical characterization pertaining to
its sensing model (namely, {Σk, gk(θ0),Jk(θ0)}), whereas the
statistical characterization pertaining to the sensing models of
all the sensors (namely, {Σk, gk(θ0),Jk(θ0)}Kk=1) should be
available at the FC. The procedures for (optimized) quantizer
processing at the kth sensor and the computation of all sensors’
quantizers parameters at the FC are reported in Algos. 2 and 3,
respectively. Clearly, a corresponding information exchange
(with additional overhead) between the sensors and the FC is
required only upon a (statistical) change of the sensing model.

Furthermore, we observe that for RND and RSP precoding ad-
ditional coordination between the sensors and the FC is required,
since they rely on a random generation process for sampling the
unscaled ck and the chosen column of UΨ, respectively (cf.
Section IV-C). However, in the above case, it only suffices that
the FC will have a twin pseudo-random generator (with the same
initial seed) as each sensor.
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V. ENABLING MULTI-BIT QUANTIZATION

In this section, we extend the findings obtained in the previous
sections to the multi-bit quantizer. More specifically, hereinafter
we assume that kth sensor quantizes its measurement vector into
mk ≤ m bits, whose expressions are as follows [35]:

bk,i � u
(
cTk,i xk − τk,i

)
i = 1, . . . ,mk (40)

In the above equation bk,i denotes the ith bit obtained from
quantization of measurement vector xk via a hyperplane-based
quantizer having ck,i and τk,i as the corresponding compression
vector and quantization threshold, respectively. The above set
of quantizers can be also rewritten in the compact form
bk = u(CT

k xk − τ k), where bk � [ bk,1 . . . bk,mk ]
T ∈

{0, 1}mk , Ck � [ck,1 · · · ck,mk
] ∈ Rm×mk , τ k �

[τk,1 · · · τk,mk
] ∈ Rmk , and by interpreting the (vector)

unit-step function u(·) in an elementwise fashion.
For simplicity, we will enforce statistical independence

among the bits of the same sensor. For bk,i and bk,j to be
independent, it suffices cTk,ixk and cTk,jxk to be uncorrelated,
since the noise vector is Gaussian-distributed. In other terms,
the sufficient condition is written in a compact form as:

E
(
CT

kwkw
T
kCk

)
= CT

kΣkCk = c Imk
(41)

where c is a constant, herein chosen to unity without loss of
generality. The above condition can be met by choosing the
compression matrix for kth sensor as Ck = Σ

−1/2
k Uk where

Uk � [υk,1 · · · υk,mk ] denotes a slice of a unitary basis, that is

U †
kUk = Imk

. We highlight that the above choice corresponds
to enforcing a lattice-type structure to the vector quantizers
considered herein.

Remarks: for the multi-bit case, we make the assumption∑K
k=1mk > p, i.e. there are enough independent WSN mea-

surements to (implicitly) estimate the unknown vector θ.
Before proceeding, we denote the received vector from

kth sensor by yk � [ yk,1 . . . yk,mk ]
T with the same com-

munication channel impact discussed in Eq. (5). Accord-
ingly, the overall transmitted and received vectors are de-
fined as b � [bT1 . . . bTK ]T and y � [yT

1 . . . yT
K ]T (both ∈

{0, 1}
∑K

k=1 mk ), respectively.
In what follows, we first derive both the fusion rules for the

multi-bit case with reference to the non-linear sensing model in
Eq. (1) (Section V-A). Secondly, we provide their corresponding
asymptotic characterization in the above case (Section V-B).
Finally, we deal with the design of multi-bit quantizers (Sec-
tion V-C).

A. Multi-Bit Fusion Rules

We first focus on obtaining the likelihood function Pmb(y;θ)
for the multi-bit quantization case. It is not difficult to show that,
in such case, the explicit expression generalizes as follows:

Pmb(y;θ) =

K∏
k=1

mk∏
i=1

[ψk,i (θ)]
yk.i [1− ψk,i (θ)]

(1−yk,i) (42)

where

ψk,i (θ) = Q(
τk,i −

[
Σ

−1/2
k υk,i

]T
gk (θ)

)
(1− 2εk) + εk

(43)

TABLE III
COMPUTATIONAL COMPLEXITY OF MULTI-BIT FUSION RULES: mk IS THE

NUMBER OF BITS SENT FROM kTH SENSOR TO THE FC; m IS THE SIZE OF THE

MEASUREMENT SPACE; p IS THE SIZE OF THE PARAMETER VECTOR; Nθ

DENOTES THE NUMBER OF BINS USED FOR DISCRETIZING EACH DIMENSION

OF THE VECTOR θ.

The above result follows from vk,i � (Σ
−1/2
k υk,i)

Twk being a
zero-mean unit-variance Gaussian RV. First, we observe that the
GLR statistic can be obtained by substituting Eq. (42) into the
general expression provided in Eq. (9). Hence, it is not reported
for brevity. Clearly, the GLR statistic retains the same difficulties
as the one-bit case.

On the other hand, we show in what follows that Rao test ad-
mits a closed-form even in this setup. This result is accomplished
by capitalizing the explicit expressions of the score vector and
the FIM, which are reported in the following two propositions.

Proposition 3: The closed-form multi-bit score vector is:

δmb (y;θ) =

K∑
k=1

mk∑
i=1

{
qk,i (θ) [yk,i − ψk,i (θ)]J

T
k (θ)Σ

−1/2
k υk,i

}
(44)

where

qk,i (θ) �
ζk pvk,i

(
τk,i −

[
Σ

−1/2
k υk,i

]T
gk (θ)

)
ψk,i (θ) (1− ψk,i (θ))

(45)

Proof: The proof is similar to that contained in Appendix A
and thus not reported for brevity.

Proposition 4: The explicit form of the FIM with multi-bit
sensors:

Imb (θ) =

K∑
k=1

mk∑
i=1

{
qk,i (θ)

2 ψk,i(θ) [1− ψk,i(θ)]

× JT
k (θ) Σ

−1/2
k υk,i υ

T
k,i Σ

−1/2
k Jk (θ)

}
(46)

Proof: The derivation follows on from the proof contained in
Appendix B. Hence, it is omitted for brevity.

Complexity requirements: The computational complexity
of multi-bit Rao test isO(

∑K
k=1mk p+ p2), i.e. a linear scaling

in the number of sensors and bit resolution, and a quadratic
scaling in the size of the unknown vector θ. Conversely,
GLRT complexity (based on grid-implementation) scales as
O((

∑K
k=1mk)N

p
θ ), where Nθ is the size of the per-dimension

quantization grid applied to the vector θ. This incurs in a linear
scaling in the number of sensors and their bit resolution, but an
exponential scaling in the size of the unknown vector. The com-
plexity summary for both the multi-bit fusion rules is reported
in Table III. As in the one-bit case, the aforementioned table
reports also the corresponding complexity measures associated
to pre-computations and needed upon a change of the pairs
{{ck,i, τk,i}mk

i=1}Kk=1.
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We now report the specialization of the multi-bit Rao fusion
rule to the VL model. Indeed, we recall that, for the SL model,
there is only one measurement dimension (m = 1). Nonetheless,
we recall the general appeal of multi-bit Rao test (closed-form)
implementation in the general non-linear case, as no additional
terms are required even when varying the bit resolution (e.g.
gk(θ) and Jk(θ), evaluated at θ0, are solely required also in
this case).

A. Multi-bit Rao Fusion Rule for VL model: For the VL
measurement model in Eq. (3), the score vector and the FIM
reduce to

δmb (y;θ)=

K∑
k=1

mk∑
i=1

{
qk,i (θ)

[
yk,i−ψk,i (θ)

]
HT

kΣ
−1/2
k υk,i

}
(47)

and

Imb (θ) =
K∑

k=1

mk∑
i=1

{
qk,i (θ)

2 ψk,i(θ) [1− ψk,i(θ)]

× HT
k Σ

−1/2
k υk,i υ

T
k,i Σ

−1/2
k Hk

}
(48)

respectively. Differently, ψk,i(θ) simplifies into

ψk,i (θ) = Q
(
τk,i − υT

k,i Σ
−1/2
k Hk θ

)
(1− 2εk) + εk

(49)
Finally, the simplified qk,i(θ) is evaluated as:

qk,i (θ) �
ζk pvk,i

(
τk,i − υT

k,iΣ
−1/2
k Hk θ

)
ψk,i (θ) (1− ψk,i (θ))

(50)

B. Asymptotic Characterization of Multi-Bit Fusion Rules

Clearly, GLRT and Rao test retain the same asymptotic per-
formance reported in Eq. (20), with the (multi-bit) non-centrality
parameter λmb now given by:2

λmb =

K∑
k=1

mk∑
i=1

{
qk,i (θ0, τk,i,υk,i)

2 ψk,i(θ0, τk,i,υk,i)

×[1− ψk,i(θ0, τk,i,υk,i)]
〈
υk,i,Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2
}

(51)

Generalizing the one-bit case, detection performance now de-
pends on 2mk different parameters per-node, i.e. the local
thresholds (τk,i, i = 1, . . . ,mk) and the compression vectors
(υk,i, i = 1, . . . ,mk). Their proposed design is reported here-
inafter. Finally, we observe that for the special VL measure-
ment model, the explicit form of λmb is obtained (i) by ex-
ploiting Eqs. (49) and (50) into (51) and (ii) by replacing
Jk(θ0)(θ1 − θ0) with Hk θ1.

The objective of next subsection is to design thresholds τk,i
and (intra-sensor orthogonal) compression vectors υk,i so as
to optimize the non-centrality parameter λmb (monotonically

2In the mentioned expression, we have made a slight abuse of notation for
both the terms qk,i(θ, τk,i,υk,i) and ψk,i(θ, τk,i,υk,i), so as to stress also
their dependence on the parameters (τk,i,υk,i).

related to the asymptotic performance of GLRT and Rao test),
that is:

{τ �
k,U

�
k}Kk=1 = argmax

{τk,Uk}Kk=1

λmb

({τ k,Uk}Kk=1

)
(52)

To exploit the structural properties of the non-centrality param-
eter, the objective in Eq. (51) is rewritten, analogously to one-bit
case, as

λmb

(
{τ k, Uk}Kk=1

)
=

K∑
k=1

mk∑
i=1

κk,i (τk,i,υk,i) βk,i(υk,i)

(53)

where the definitions κk,i(τk,i,υk,i) �
qk,i(θ0, τk,i,υk,i)

2ψk,i(θ0, τk,i,υk,i) [1− ψk(θ0, τk,i,υk,i)]

and βk,i(υk,i) �
〈
υk,i,Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2

have been

employed.
The above form of the non-centrality parameter λmb allows

(since all the involved terms are non-negative) first to obtain each
quantizer threshold by maximizing the per-sensor per-bit con-
tribution κk,i(τk,i,υk,i) so as to obtain an optimized τ�k,i(υk,i)
(i.e. being function of the corresponding compression vector
only). Once τ�k,i(υk,i) is obtained, we will address the design of
υk,i’s.

C. Design of Sensors’ Multi-Bit Quantizers

Hereinafter, based on the discussion in Section IV-B,
the quantization thresholds τk,i’s are given by τ�k,i(υk,i) �
argmax

τk,i

κk,i(τk,i,υk,i). The above objective is expressed in

closed-form as:

κk,i(τk,i,υk,i) =

p2vk,i

(
τk,i − υT

k,i ḡk(θ0)
)

Q
(
τk,i − υT

k,iḡk(θ0)
) [

1−Q
(
τk,i − υT

k,iḡk(θ0)
)]

+Δk

(54)

where ḡk(θ0) � Σ
−1/2
k gk(θ0). Then, exploiting similar results

as one-bit case, it follows that τ�k,i(υk,i) = υT
k,i Σ

−1/2
k gk(θ0)

corresponds to the optimum threshold. We remark that, even in
the multi-bit case, the optimum threshold does not depend on
the BEP value εk.

Substituting the optimal value τ�k,i(υk,i) within Eq. (54) pro-
vides the (threshold-)optimized expressionκk,i(τ�k (υk,i),υk,i),
whose explicit form is:

κk,i(τ
�
k (υk,i),υk,i) =

p2vk,i
(0)

Q(0)[1−Q(0)] + Δk
=

2ζ2k
π

(55)

Once we have optimized the thresholds τk,i, the non-centrality
parameter λmb(·) assumes the following expression:

λmb

(
{τ �

k(Uk) , Uk}Kk=1

)

=

K∑
k=1

mk∑
i=1

κk,i
(
τ�k,i(υk,i), υk,i

)
βk,i(υk,i)

=

K∑
k=1

2 ζ2k
π

mk∑
i=1

〈
υk,i, Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2

(56)

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on March 01,2021 at 10:28:44 UTC from IEEE Xplore.  Restrictions apply. 



754 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 6, 2020

Clearly, the unavailability of the true value of θ1 leads to the
same impracticability in the design of the optimal compression
matrix U�

k as in the one-bit case. Correspondingly, these tech-
nical issues also hold for the (simpler) VL model.

Specifically, each sensor term
∑mk

i=1 〈υk,i, γk〉2 =
γT
k (UkU

T
k )γk in Eq. (56) is a symmetric bilinear form, where

γk � Σ
−1/2
k Jk(θ0)(θ1 − θ0). By leveraging noteworthy

properties of bilinear forms, it is known that such term
is maximized when γk is aligned toward the eigenvector
corresponding to the largest eigenvalue of UkU

T
k . However,

since Uk is a slice of a unitary basis, this is tantamount to
achieve the displacement of γk within the subspace generated
byUk (as all the columns contribute equally in terms of energy).
Accordingly, the (clairvoyant) matrix U�

k should be designed
such that its generated subspace “covers” all the components of
the vector γk (which depends on the unknown θ1).

Accordingly, as in the case of one-bit quantization, the need
for sub-optimal design approaches arises. Herein, three dif-
ferent heuristic alternatives are explored, described hereinafter
and based on generalization of one-bit heuristics proposed in
Section IV-C. We recall that these heuristics retain the same im-
plementation requirements as the one-bit case in Section IV-D.

(Orthogonal) Random precoding (RND) corresponds to the
naivest precoding approach, as adopted in [33] for decentralized
detection in the no-quantization case. Specifically, the compres-
sion vectors are chosen such that ck ∼ N (0m, Im) and then
normalized as ck/‖ck‖.

(Orthogonal) Random subspace precoding (RSP) consists
in considering the singular value decomposition of the ma-
trix Ψ � Σ−1

k Jk(θ0), namely Ψ = UΨΛΨV
T
Ψ, and randomly

sampling mk ≤ p columns from UΨ. By doing so, the or-
thogonal compression matrix will be guaranteed to generate
part of the subspace where the γk always lies. In view of the
aforementioned assumptions, the above method can be used only
for mk ≤ p.

(Orthogonal) Top(-directions) subspace precoding (TSP)
similarly considers the singular value decomposition of the ma-
trix Ψ, namely Ψ = UΨΛΨV

T
Ψ, but rather uses the columns of

UΨ associated to themk highest singular values. In this way, the
orthogonal compression matrix will be guaranteed to generate
part of the subspace where the vector γk always lies, while
picking the mk directions corresponding the highest sensitivity
with respect to deviations of (θ1 − θ0). Similarly as TSP, the
above method can be used only for mk ≤ p.

Remarks: we stress that we do not consider sign-assisted
precoding [33] and UNF precoding in the multi-bit case. Indeed,
the former retains the same implementation problems as in the
one-bit case, while for the latter there is no trival extension of
uniform-direction concept.

VI. SIMULATION RESULTS

A. Setup and Upper-Bounds Definition

In this section, we numerically investigate the proposed fusion
schemes for the VL model described in Eq. (3), with parameters

m = 8 (size of the observation vector) and p = 3 (size of the un-
known vector signal). To this end, we consider a WSN scenario
with K = 15 sensors.

To reproduce a heterogeneous scenario, the noise covari-
ance Σk of each sensor is randomly generated following
an exponentially-correlated Gaussian model, namely Σk =
(σ2

cM c,k + σ2
nIN ), where σ2

c = (9/10) is the clutter power
and σ2

n = (1/10) is the thermal noise power. Additionally, the
(r, s)th element of M c,k is given by (�k)

|r−s|, where �k ∼
U(0.7, 0.9). Initially, we assume ideal BEP channels (Pe,k =
0 , k ∈ K) between sensors and the FC.

In the simulated scenarios, when the hypothesis H1 holds, the
vector parameter is sampled as θ ∼ N (03, I3) at each run and
scaled such to ensure the desired sensing SNR (assumed to be
the same for all the sensors). The latter is defined as SNR �

‖θ‖2
tr(Σk)/m . The results are based on 105 Monte Carlo runs.

For the sake of completeness, to assess the quantization
and reporting effects, we consider the following upper bound.
Specifically, we consider a GLRT/Rao test having all the mea-
surements x1, . . . ,xK ideally available at the FC.3 Its explicit
expression for the VL model is (we do not report the proof for
sake of brevity, since it can be found in [23]):

Λub,vl =(
K∑

k=1

xT
kΣ

−1
k Hk

)(
K∑

k=1

HT
k Σ−1

k Hk

)−1 ( K∑
k=1

HT
kΣ

−1
k xk

)

(57)

We remark that in the general measurement case described by
Eq. (1), two different upper bounds (either based on GLRT or
Rao test) should be considered.4

B. Results and Discussion

The present subsection investigates the performance of GLR
and Rao tests by analyzing their trends with relevant WSN
parameters, including (i) the different compression heuristics,
(ii) the sensing SNR, (iii) the quantization resolution mk and
(iv) the degree of channel impairments.

Receiver Operating Characteristic (ROC) analysis: Ini-
tially, in Fig. 2, we compare the ROCs of GLR and Rao tests
for the specified VL model, focusing on the single-bit case
(mk = 1) and a moderate sensing SNR = 5dB. Regarding
the optimization of hyperplane-based quantizers, we consider
τk = 0 and investigate the four heuristic approaches for the
design of the compression vectors ck’s. First, results highlight
no significant performance difference between GLR and Rao
tests over all the (PF0

, PD0
) plane. This observation applies to

all the compression vector choices considered. Additionally, it

3Indeed, in this special case, Rao test and GLRT are statistically equiva-
lent [23]

4Specifically, GLR expression is Λub
G �

∑K

k=1
{2xT

k Σ−1
k

gk(θ̂)−
gk(θ̂)

T Σ−1
k

gk(θ̂)} where θ̂ denotes the usual ML es-

timate. Differently, Rao statistic is given as Λub
R �

v(x;θ0)
T {

∑K

k=1
Jk(θ0)

T Σ−1
k

Jk(θ0)}v(x;θ0) where v(x;θ0) �∑K

k=1
Jk(θ0)

T Σ−1
k

(xk − gk(θ0)).
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Fig. 2. PD0
vs. PF0

for GLR (◦ markers) and Rao (× markers) tests.
Random (RND), uniform (UNF), random subspace (RSP) and top subspace (TSP)
precoding approaches are compared. WSN with K = 15 sensors, m = 8 and
p = 3, and the sensing SNR = 5dB. One bit-quantization (mk = 1) and ideal
BSCs are considered (Pe,k = 0).

is apparent the better performance of both RSP and TSP, due
to their specialization on the subspace where the vector signal
θ lies. In particular, the latter outperforms the former due to
the alignment with the highest principal direction of the sensing
subspace Σ−1

k Hk.
Detection rate vs. sensing SNR: We then compare the per-

formance of GLR and Rao tests by considering the detection rate
PD0

and its improvement with the sensing SNR, focusing on the
four compression heuristics adopted. Herein, the false-alarm rate
is set5 to PF0

= 0.01. The corresponding results are shown in
Fig. 3. Additionally, we assess the possible benefits of multi-bit
quantization, namely when moving from mk = 1 (bottom plot)
to mk = 2 (top plot). Also in this case the quantizer thresholds
are optimally (from an asymptotic viewpoint) chosen as τ�k = 0.
For the sake of complete comparison, also the PD0

performance
of the upper bound described in Eq. (57) is reported. Results
show that (i) all compression methods and (ii) both rules benefit
from (sensing) SNR increase, with GLR performing slightly
better. However, the Rao test is far more efficient than the GLRT
from the viewpoint of computation burden and complexity. The
relative trend among the four compression methods is retained
for the whole SNR range considered. When moving frommk =
1 to mk = 2, there is a relative shift of all methods toward the
performance of the upper bound. Still, the latter performance
cannot be approached due to the fact that the upper bound has
available m-dimensional and full-precision (viz. unquantized)
information for performing the fusion process.

5When a given false-alarm rate αFA needs to be ensured, we generate
NF0

= 102/αFA runs according to the hypothesis H0. For each run, the
corresponding statistic Λ is calculated. Then, all the samples of the decision
statistic are sorted increasingly to obtain an empirical CDF of the random
variable Λ|H0, defined as Pr(Λ < γ |H0). Accordingly, the desired γ is
chosen as γ : Pr(Λ < γ |H0) = (1− αFA). This corresponds to choosing
γ from the empirical CDF as the value corresponding to the index closest to
NF0

(1− αFA).

Fig. 3. PD0
vs. SNR [dB] for GLR (◦ markers) and Rao (× markers) tests,

subject to PF0
= 0.01. Top and bottom plots refer to two-bit (mk = 2) and

one-bit quantization (mk = 1), respectively. Random (RND), Uniform (UNF),
Random Subspace (RSP) and Top Subspace (TSP) precoding approaches are
compared. WSN with K = 15 sensors, m = 8 and p = 3. Ideal BSCs are
considered (Pe,k = 0).

Fig. 4. PD0
vs. mk for GLR (◦ markers) and Rao (× markers) tests, subject

to PF0
= 0.01. Top and bottom plots refer to SNR = 5 dB (moderate SNR)

and SNR = −3 dB (low SNR), respectively. Random (RND), uniform (UNF),
random subspace (RSP) and top subspace (TSP) precoding approaches are
compared. Shaded area indicates number of quantization bits ≤ of the signal
subspace size. WSN with K = 15 sensors, m = 8 and p = 3. Ideal BSCs are
considered (Pe,k = 0).

Detection rate vs. quantization resolution: Subsequently,
we focus on the effect of increasing quantization resolution on
detection performance in Fig. 4. To this end, we report PD0

vs. mk for both the fusion rules, setting the false-alarm rate to
PF0

= 0.01. The effect of RND, RSP and TSP compressions
strategies is investigated herein (recall that UNF is only defined
for mk = 1). To appreciate such effect in different conditions,
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Fig. 5. PD0
vs. Pe for GLR (◦ markers) and Rao (× markers) tests, subject

to PF0
= 0.01. Top and bottom plots refer to three-bit (mk = 3) and two-bit

quantization (mk = 2), respectively. Random (RND), random subspace (RSP)
and top subspace (TSP) precoding approaches are compared. To assess the gain
due to finer quantization, in light grey we also report the corresponding GLR and
Rao performance when only one-bit quantization (with TSP precoding) is used.
A WSN withK = 15 sensors,m = 8 and p = 3, and sensing SNR = 5dB is
considered.

we report performance corresponding to moderate and low SNR
values, corresponding to SNR = 5dB and SNR = −3 dB, re-
ported in top and bottom plots, respectively. Results in both
plots highlight the clear benefit of using both Rao and GLR
tests which leverage multi-bit quantization. Specifically, in the
moderate SNR case, three bits are sufficient for RSP and TSP
to achieve ideal performance, whereas more bits are needed by
RND to achieve the same (ideal) detection rate. Differently, in
the low SNR case, although beneficial, the performance gain
with mk is not able to reach ideal (and also the upper bound)
performance. We recall that RND compression is also defined
for p < mk < m, as opposed to RSP and TSP.

Detection rate vs. BEP: Finally, we assess the performance
of both GLR and Rao fusion rules with respect to communication
channel impairments (i.e. Pe,k 	= 0). To this end, in Fig. 5
we show PD0

vs. Pe (we assume the same BEP for all the
sensors, namely Pe,k = Pe , ∀k ∈ K) for both the fusion rules
and the four compression methods investigated. For the sake of
completeness, we consider mk = 2 (bottom) and mk = 3 (top)
quantization bit cases, so as to appreciate the effects of channel
errors on different resolutions. As in the previous analyses, we
consider a false-alarm rate equal to PF0

= 0.01. Results high-
light that channel-errors may degrade system detection perfor-
mance (independently on the rule implemented at the FC), e.g.
considering mk = 3 and RSP/TSP precoders there is detection
loss of ≈ 20% when there is Pe = 0.1. However, the gains due
to multi-bit quantization are still apparent even when Pe 	= 0.
For instance, when Pe = 0.1 and TSP precoding is adopted,
the detection rate with three-bit (resp. two-bit) quantization
improves over one-bit counterparts by ≈ 60% (resp. ≈ 40%).

VII. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper, we considered decentralized detection of an
unknown vector θ by sensor fusion of data from nodes associ-
ated to a non-linear vector measurement model. These sensors
were assumed to employ hyperplane-based quantizers and to be
affected by impaired communication channels. The Rao fusion
rule was derived and proposed herein as a simpler (and thus
attractive) alternative to GLRT, since it is in closed form (even
under such general model) and obviates the need for cumber-
some ML estimation.

Additionally, we provided the explicit expression of the
asymptotic (weak-signal) performance of Rao (viz. GLRT)
fusion rule, here exploited to optimize the system detection
performance (namely, the non-centrality parameter) by tuning
the parameters (τk, ck) of each sensor quantizer. It was shown
that, while an optimized expression for kth threshold can be
obtained explicitly as τ�k = cTk gk(θ0), the optimal c�k depends
in turn on the unknown vector signal θ. Hence, we resorted to
four reasonable heuristics for its design (i.e. RND, UNF, RSP
and TSP). It was shown through simulations that the Rao test,
in addition to being asymptotically equivalent to the GLRT,
achieves similar performance trends in the case of a finite
number of sensors (but with considerable less computational
burden). Additionally, we observed thatRSP andTSP precoders
outperform RND (and UNF in the single bit case), due to the
knowledge of the subspace where the (unknown) vector signal
lies.

Furthermore, our study also demonstrated the advantage of
multi-bit quantization against one-bit quantization, as well as
its practical feasibility, by deriving a Rao test for this general-
ized setup. According to the results, even a few (two or three)
quantization bits are sufficient to provide relevant performance
gains in a WSN with perfect reporting channels. Differently,
the presence of errors on the reporting phase increases the
performance gap with the upper bound (i.e. the fully-precision,
unquantized benchmark).

Future directions will include design of Rao test for al-
ternative, (even) more general and realistic measurement &
channel models: (a) sensing models enjoying sparsity [21];
(b) energy-efficient censoring sensors [41]; (c) time-correlated
reporting channels [42]; (d) design of online precoders ck’s [40];
(e) unknown random signal parameters [43]; (f ) incompletely-
specified noise PDFs.

APPENDIX

PROOF OF PROPOSITION 1 (SCORE VECTOR)

Capitalizing the independence among nodes’ data, we obtain
the following simplified form of the score function:

δ (y;θ) =
K∑

k=1

∂ lnP (yk;θ)

∂θ
(58)

Then, by defining ak � cTk gk(θ), kth sensor contribution to
score vector can be expressed as:

∂ lnP (yk;θ)

∂θ
=
∂ lnP (yk;θ)

∂ak

∂ak
∂θ

(59)
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Furthermore, exploiting Eqs. (7) and (8), it provides:

∂ lnP (yk;θ)

∂ak
=

(yk − ψk (θ)) ζk pvk

(
τk − cTk gk (θ)

)
ψk (θ) (1− ψk (θ))

(60)
where we have defined ζk � (1− 2εk).

Finally, by noting that ∂ak

∂θ = JT
k (θ)ck and exploiting

Eq. (60), provides the desired result in Eq. (11).

APPENDIX B
PROOF OF PROPOSITION 2 (FIM)

We start from FIM general definition [44]:

I (θ) � E
{
δ(y;θ) δ(y;θ)T

}
(61)

Then, exploiting independence among the received bits, we
obtain the simplified (additive) form:

I (θ) =
K∑

k=1

E

{
∂ lnP (yk;θ)

∂θ

(
∂ lnP (yk;θ)

∂θ

)T
}
, (62)

Each of the K terms in the above equation can be obtained
by resorting to Eq. (60), which thus gives the intermediate
expression:

I (θ) =

K∑
k=1

{
Eyk

{
(ψk (θ)− yk)

2

ψ2
k (θ) (1− ψk (θ))

2

}

ζ2k p
2
vk

(
τk − cTk gk (θ)

)
JT

k (θ) ckc
T
k Jk (θ)

}
.

(63)

On the other hand, the expectation in Eq. (63) is simply computed
as:

Eyk

{
(ψk (θ)− yk)

2

ψ2
k (θ) (1− ψk (θ))

2

}
=

1

ψk (θ) (1− ψk (θ))
(64)

Replacing the above result in Eq. (63) gives the final result in
(14). This concludes the proof.
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